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Binary Compatibility

Single worst obstacle to processor evolution
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Binary Compatibility

New architectures cannot be introduced and the 
scope for enhancement is reduced considerably

Non IA-32 architectures can ever be established?
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Summary

Traditional approaches to circumvent (with very 
moderate success) binary compatibility issues

Dynamic Binary Translation (DBT)
Key difficulties, solutions, open problems
Example applications
Further work
Conclusions
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Source and Target Architecture

Translation
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Activities in DBT

Transmeta’s Crusoe
Commercial processor shipped in 2000
Source: IA-32 architecture (Pentium III)
Targets very low power, low cost markets

IBM’s Daisy
Research project started in 1996
Source: PowerPC architecture
16-issue VLIW

HP Labs’ Dynamo
Source = Target: PA-RISC to PA-RISC translator (!)

And many more…
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Two Ways to Aggressive ILP
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(Statically Scheduled) Very Long 
Instruction Word Processor

Static 
Scheduling:
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compile time in 

software
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VLIW Binary Is Incompatible with 
More Aggressive Implementations
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Emulation or Static Translation

0x0000 12 34 56 78 1a 2b 3c 4d c1 b2 a3 92 3c 00 41 23
0x0010 12 13 14 15 32 aa bb cc 30 00 19 82 41 42 53 54
0x0020 43 44 67 78 a2 b3 c4 d5 01 aa bb cc 14 00 1a bc
0x0030 01 aa cc bb 04 ff fe fd 08 00 1a bc 12 42 42 42?
Emulation: Instruction by instruction simulation 

of the source architecture
Static Translation: Conversion from machine 

code of the source architecture to the machine 
code of the target architecture
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Emulation

0x0000 12 34 56 78 1a 2b 3c 4d c1 b2 a3 92 3c 00 41 23
0x0010 12 13 14 15 32 aa bb cc 30 00 19 82 41 42 53 54
0x0020 43 44 67 78 a2 b3 c4 d5 01 aa bb cc 14 00 1a bc
0x0030 01 aa cc bb 04 ff fe fd 08 00 1a bc 12 42 42 42

addi $a1, $v0, 12

addi_sub {
…
};

mul_sub {
…
};

mul $v1, $v1, $a0

Performance cannot be but poor…
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Static Translation

0x0000 12 34 56 78 1a 2b 3c 4d c1 b2 a3 92 3c 00 41 23
0x0010 12 13 14 15 32 aa bb cc 30 00 19 82 41 42 53 54
0x0020 43 44 67 78 a2 b3 c4 d5 01 aa bb cc 14 00 1a bc
0x0030 01 aa cc bb 04 ff fe fd 08 00 1a bc 12 42 42 42

0x0000 30 00 19 82 41 04 ff fe fd 08 78 a2 b3 53 54 c1
0x0010 12 13 14 15 32 aa bb cc 12 34 56 78 1a b2 a3 92
0x0020 2b 3c 00 41 23 3c 4d c4 d5 01 aa bb cc 00 1a bc
0x0030 01 00 1a bc 12 42 42 42 42 43 44 67 aa 14 cc bb

add $a1, $a1, $v1 ADD BX, CX

addi $a1, $v0, 12 ADD BX, 12

mul $v1, $v1, $a0 MUL EX, DX

jal label CALL label
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Difficulties of Static Translation

Code identification: all code must be 
discovered statically and separated from 
embedded data

Self-modifying code: what to do with it? 
Additional hardware to allow support of source 
architecture?

Precise Exceptions: no 1-to-1 relation 
between target instructions and source ones

OS: Support of shared libraries and system calls

Never a 100% solution!
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Dynamic Binary Translation

The basic idea of a hybrid approach:

Merge emulation and translation
to get the best of both worlds

(and finally get much more…)
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Dynamic Binary Translation

How to put the idea in practice?
Start by emulate everything

 Explore code
 Profile (control flow, data, etc.)

Translate and optimise code reused frequently
 Optimise when it is worth spending the effort

Use translation when available
 Run efficiently important code
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Dynamic Binary Translation
Typical Execution Flow
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Typical Optimisations to Translated 
Code

ILP scheduling (data and control 
speculation)
Loop unrolling
Alias analysis
Load-store telescoping
Copy propagation
Combining
Unification
Limited dead-code elimination
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DBT Hardware/Software Interface
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DBT Engine

Additional layer of software which also 
takes over the hardware scheduler of 
superscalar processors
Many names: Virtual Machine Monitor 

(Daisy), Code Morphing Software 
(Crusoe), etc.
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DBT System (Daisy)
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Translation Cache

Keep translated pages in memory for later 
reuse

Not a real cache: can be a translation buffer in 
main memory

Essential to leverage the high cost of 
translation and of good optimisations

Trade-off: Cost of memory vs. higher reuse 
Research topic: Best allocation policies?
Invalidate translated pages when modification in 

the corresponding source page
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Difficult Problems for DBT

Self-modifying code
Precise exceptions
Address translations, aliasing
Self-referential code
Management of translation cache
Real-time code
Boot code
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Example of Problems: 
DBT and Exceptions

Asynchronous exceptions
Can be delayed, no big deal
Wait until end of group
Translate exception handler
Invoke translated exception handler
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Example of Problems: 
DBT and Exceptions

Synchronous exceptions (e.g., Crusoe)
During emulation, no issue
If synchronous exception during the execution of a 

translated and optimised group of VLIW 
instructions, unclear instruction and state w.r.t. 
source architecture (speculative, out-of-order, etc.)

Revert status to beginning of current translated 
group

Re-emulate source architecture to find the exact 
point of the exception and to leave the processor in 
the architecturally correct state

Invoke translated exception handler
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Example of Problems: 
DBT and Exceptions

Not so simple…
Reverting status needs some architectural 

support (Crusoe)
Set of shadow registers which get the value of the 

main registers at the end of a group
Gated store buffer which holds pending stores for 

commit at the end of a group
Side advantages in optimisation potential
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Does it Really Work?
Some Performance Figures

Daisy achieves ILP up to 3-4 instructions per 
cycle

Transmeta T5400 at 667 MHz is about the same 
of Pentium III at 500 MHz (Doug Laird, 
Transmeta VP)

Dynamo improves execution time up to 22%
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Daisy Break-out of CPI Performance 
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Additional Optimisations in DBT

Block Reordering: Make target image 
execution as sequential as possible
Memory Colouring: Improve mapping of 

translated code to fit target memory 
hierarchy
Code Specialization: Clone procedures 

based on constant parameter values
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Benefits of DBT

Compatibility
With native implementations
Across different VLIWs sizes and generations

Reliability and possibilities to upgrade
Software patches for bugs in translator
Software patches for optimiser enhancements
Translator can be used to hide hardware bugs
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Benefits of DBT

Low hardware cost
SW scheduler: smaller chip with higher yield
Fast in-order implementations possible

Higher instruction-level parallelism
Dynamic groups can be made arbitrarily large

Low-power consumption
Memory consumes less than logic: schedule 

once and then fetch from memory (?)
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Issues of DBT

Reduced resources for the user
Cycles: lost performance for translation
Memory

Slow at start (emulation) and real-time 
difficulties
Debugging difficulties
Target machine code far removed from 

source code
Non-deterministic behaviour of real-systems
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Open Problems of DBT

Can a DBT VLIW machine be ever any 
better than a well-conceived superscalar?
Better light-weight optimisations possible?
Real-time problems solvable?
Which translation cache management 

policy is best?
Target architecture ever exposed to 

users?
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DBT for Multiple Source 
Architectures?

 Efficient translation requires some hardware support for 
the source architecture in the target hardware 
architecture
 Opcodes
 Condition code registers
 Floating-point formats
 Timer registers
 Segment registers
 Address translation and MMU
 Other awkward details (8-bit reg. access, alignment,…)

 Crusoe’s VLIW has some features to address IA-32’s 
legacy oddities
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More Aggressive Application:
Dynamo’s Dynamic Optimisation

Static optimisation in compiler backend is 
limited
Often profile-based optimisations not used
Lots of runtime info not available
Static optimisations are typically 

implementation independent
“Translate” with the same source and 

target architecture: dynamic 
optimisation!
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More Aggressive Application:
Dynamo’s Dynamic Optimisation

 Slightly different emphasis: centred on user code, no 
optimisation of the OS
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More Aggressive Application:
Dynamo’s Dynamic Optimisation

Optimisations:
Identify long instruction groups (traces)
Extend traces over
 Indirect branches
 Function calls and returns
 Virtual function calls

Optimise traces: classic ILP optimisations, 
remove unconditional branches,…

Dynamo can bail out…
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More Aggressive Application:
Dynamo Speedup over –O2

 No optimisation  only dynamic inlining with trace selection
 go and vortex bail-out
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More Aggressive Application:
Dynamo Bail-Out

Source: Bala et al., © ACM 2000



Is the Idea Dead with Transmeta?
Not at All…

 Nvidia announced in 2014 its first CPU design, code-named Denver
 Native ARMv8  2 instructions per cycle

 Avoid the troubles of emulation
 Uses trivial translation (“decoding”) into a proprietary µ-op set 

 Can perform DBT to the proprietary µ-op set  7 µ-op per cycle
 Fully exploits the µ-op set only with proper recompilation / sw optimization
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Denver Microarchitecture:
A Simple In-Order Superscalar
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No fancy OOO scheduler!
Simply check data 

dependences and stall

Skewed pipeline
can bundle a 

Load/ALU/Store 
dependent sequence

µ-ops are fetched in bundles:
similar to a VLIW in that

parallel operations are selected
at compile time



A Sample Execution Trace
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The optimizer is invoked for new parts of code never visited before 
or for translations that have been evicted, as natural

Yet, the optimizer can also be invoked if the branch behaviour 
changes (e.g., a branch predictor is modified)



The Net Result: The Fastest ARM
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