
Advanced Computer Architecture
—

Part I: General Purpose
Dynamic Binary Translation,…

Paolo.Ienne@epfl.ch
EPFL – I&C – LAP

mailto:Paolo.Ienne@epfl.ch

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation2

Binary Compatibility

Single worst obstacle to processor evolution

x86 native
processor

MS
Windows

MS
Windows

MS
Windows

MS
WindowsOS

MS
Windows

MS
Windows

MS
Windows

MS
Windows
Commercial
Applications

MS
Windows

MS
Windows

MS
Windows

MS
Windows

User
Software

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation3

Binary Compatibility

New architectures cannot be introduced and the
scope for enhancement is reduced considerably

Non IA-32 architectures can ever be established?

MS
Windows

MS
Windows

MS
Windows

MS
WindowsOS

MS
Windows

MS
Windows

MS
Windows

MS
Windows
Commercial
Applications

MS
Windows

MS
Windows

MS
Windows

MS
Windows

User
Software

State-of-the-art
new architecture

? ? ?

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation4

Summary

Traditional approaches to circumvent (with very
moderate success) binary compatibility issues

Dynamic Binary Translation (DBT)
Key difficulties, solutions, open problems
Example applications
Further work
Conclusions

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation5

Source and Target Architecture

Translation

Translate
and/or

Optimise

Binary File
=

Source
Architecture

Physical
Hardware

=
Target

Architecture

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation6

Activities in DBT

Transmeta’s Crusoe
Commercial processor shipped in 2000
Source: IA-32 architecture (Pentium III)
Targets very low power, low cost markets

IBM’s Daisy
Research project started in 1996
Source: PowerPC architecture
16-issue VLIW

HP Labs’ Dynamo
Source = Target: PA-RISC to PA-RISC translator (!)

And many more…

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation7

Two Ways to Aggressive ILP

Instructions

Cycles

VLIW

Pipelining

Standard

Dynamic Scheduling

Superscalar

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation8

(Statically Scheduled) Very Long
Instruction Word Processor

Static
Scheduling:

What each unit
does in each cycle

is decided at
compile time in

software

FP UnitALU 1Register Files Branch
Unit

Load/Store
UnitALU 2

1234:
1235:
1236:
1237:
1238:

128-512 bitsInstruction Memory

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation9

VLIW Binary Is Incompatible with
More Aggressive Implementations

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2

Dynamic Scheduler

FP Unit 2ALU 3

Traditional Code

FP UnitALU 1 Branch
Unit

Load/Store
UnitALU 2 FP Unit 2ALU 3

VLIW Code

???

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation10

Emulation or Static Translation

0x0000 12 34 56 78 1a 2b 3c 4d c1 b2 a3 92 3c 00 41 23
0x0010 12 13 14 15 32 aa bb cc 30 00 19 82 41 42 53 54
0x0020 43 44 67 78 a2 b3 c4 d5 01 aa bb cc 14 00 1a bc
0x0030 01 aa cc bb 04 ff fe fd 08 00 1a bc 12 42 42 42?
Emulation: Instruction by instruction simulation

of the source architecture
Static Translation: Conversion from machine

code of the source architecture to the machine
code of the target architecture

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation11

Emulation

0x0000 12 34 56 78 1a 2b 3c 4d c1 b2 a3 92 3c 00 41 23
0x0010 12 13 14 15 32 aa bb cc 30 00 19 82 41 42 53 54
0x0020 43 44 67 78 a2 b3 c4 d5 01 aa bb cc 14 00 1a bc
0x0030 01 aa cc bb 04 ff fe fd 08 00 1a bc 12 42 42 42

addi $a1, $v0, 12

addi_sub {
…
};

mul_sub {
…
};

mul $v1, $v1, $a0

Performance cannot be but poor…

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation12

Static Translation

0x0000 12 34 56 78 1a 2b 3c 4d c1 b2 a3 92 3c 00 41 23
0x0010 12 13 14 15 32 aa bb cc 30 00 19 82 41 42 53 54
0x0020 43 44 67 78 a2 b3 c4 d5 01 aa bb cc 14 00 1a bc
0x0030 01 aa cc bb 04 ff fe fd 08 00 1a bc 12 42 42 42

0x0000 30 00 19 82 41 04 ff fe fd 08 78 a2 b3 53 54 c1
0x0010 12 13 14 15 32 aa bb cc 12 34 56 78 1a b2 a3 92
0x0020 2b 3c 00 41 23 3c 4d c4 d5 01 aa bb cc 00 1a bc
0x0030 01 00 1a bc 12 42 42 42 42 43 44 67 aa 14 cc bb

add $a1, $a1, $v1 ADD BX, CX

addi $a1, $v0, 12 ADD BX, 12

mul $v1, $v1, $a0 MUL EX, DX

jal label CALL label

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation13

Difficulties of Static Translation

Code identification: all code must be
discovered statically and separated from
embedded data

Self-modifying code: what to do with it?
Additional hardware to allow support of source
architecture?

Precise Exceptions: no 1-to-1 relation
between target instructions and source ones

OS: Support of shared libraries and system calls

Never a 100% solution!

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation14

Dynamic Binary Translation

The basic idea of a hybrid approach:

Merge emulation and translation
to get the best of both worlds

(and finally get much more…)

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation15

Dynamic Binary Translation

How to put the idea in practice?
Start by emulate everything

 Explore code
 Profile (control flow, data, etc.)

Translate and optimise code reused frequently
 Optimise when it is worth spending the effort

Use translation when available
 Run efficiently important code

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation16

Dynamic Binary Translation
Typical Execution Flow

Interpret next
instr. and add it
to curr. group

Close previous
group and

begin a new one

Yes

No

Group
seen 30x?

Check first
instruction

of next group
Yes

No Translation
exists?

Translate and
schedule group

for VLIW

Yes

Execute
VLIW translation
of whole group

Stopping
point?

No

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation17

Typical Optimisations to Translated
Code

ILP scheduling (data and control
speculation)
Loop unrolling
Alias analysis
Load-store telescoping
Copy propagation
Combining
Unification
Limited dead-code elimination

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation18

DBT Hardware/Software Interface

Native
Processor

Operating System

Applications

DBT Engine

Traditional
System

Operating System

Applications

VLIW Processor

DBT
System

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation19

DBT Engine

Additional layer of software which also
takes over the hardware scheduler of
superscalar processors
Many names: Virtual Machine Monitor

(Daisy), Code Morphing Software
(Crusoe), etc.

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation20

8K Local
Data RAM

8K Local
Inst. RAM

Gated Store B.

Shadow GPRs Shadow FPRs

Example of DBT Processor
Transmeta Crusoe TM5400

64K L1
D-Cache

64K L1
I-Cache

256K L2
Unified Cache

Bus
Unit
and

Memory
Ctrl

ALU0 ALU1 Load
Store Branch FPU

64
GPRs

32
FPRs

128
bit

VLIW

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation21

PowerPC
Processor

PowerPC
Memory

Traditional System

Memory
Controller

Disk Video Network Keyboard

PowerPC
Flash ROM

L3 Cache

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation22

DBT System (Daisy)

Memory
Controller

Disk Video Network Keyboard

PowerPC
Flash ROM

L3 Cache

PowerPC
Memory

DAISY
Mem.

DAISY
Flash ROM

DAISY
VLIW

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation23

Translation Cache

Keep translated pages in memory for later
reuse

Not a real cache: can be a translation buffer in
main memory

Essential to leverage the high cost of
translation and of good optimisations

Trade-off: Cost of memory vs. higher reuse
Research topic: Best allocation policies?
Invalidate translated pages when modification in

the corresponding source page

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation24

Difficult Problems for DBT

Self-modifying code
Precise exceptions
Address translations, aliasing
Self-referential code
Management of translation cache
Real-time code
Boot code

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation25

Example of Problems:
DBT and Exceptions

Asynchronous exceptions
Can be delayed, no big deal
Wait until end of group
Translate exception handler
Invoke translated exception handler

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation26

Example of Problems:
DBT and Exceptions

Synchronous exceptions (e.g., Crusoe)
During emulation, no issue
If synchronous exception during the execution of a

translated and optimised group of VLIW
instructions, unclear instruction and state w.r.t.
source architecture (speculative, out-of-order, etc.)

Revert status to beginning of current translated
group

Re-emulate source architecture to find the exact
point of the exception and to leave the processor in
the architecturally correct state

Invoke translated exception handler

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation27

Example of Problems:
DBT and Exceptions

Not so simple…
Reverting status needs some architectural

support (Crusoe)
Set of shadow registers which get the value of the

main registers at the end of a group
Gated store buffer which holds pending stores for

commit at the end of a group
Side advantages in optimisation potential

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation28

Does it Really Work?
Some Performance Figures

Daisy achieves ILP up to 3-4 instructions per
cycle

Transmeta T5400 at 667 MHz is about the same
of Pentium III at 500 MHz (Doug Laird,
Transmeta VP)

Dynamo improves execution time up to 22%

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation29

Daisy ILP with Infinite Cache

So
ur

ce
: E

bc
io

gl
u

et
 a

l.,
 ©

 IE
EE

 2
00

0

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation30

Daisy Break-out of CPI Performance

So
ur

ce
: E

bc
io

gl
u

et
 a

l.,
 ©

 IE
EE

 2
00

0

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation31

Additional Optimisations in DBT

Block Reordering: Make target image
execution as sequential as possible
Memory Colouring: Improve mapping of

translated code to fit target memory
hierarchy
Code Specialization: Clone procedures

based on constant parameter values

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation32

Benefits of DBT

Compatibility
With native implementations
Across different VLIWs sizes and generations

Reliability and possibilities to upgrade
Software patches for bugs in translator
Software patches for optimiser enhancements
Translator can be used to hide hardware bugs

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation33

Benefits of DBT

Low hardware cost
SW scheduler: smaller chip with higher yield
Fast in-order implementations possible

Higher instruction-level parallelism
Dynamic groups can be made arbitrarily large

Low-power consumption
Memory consumes less than logic: schedule

once and then fetch from memory (?)

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation34

Issues of DBT

Reduced resources for the user
Cycles: lost performance for translation
Memory

Slow at start (emulation) and real-time
difficulties
Debugging difficulties
Target machine code far removed from

source code
Non-deterministic behaviour of real-systems

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation35

Open Problems of DBT

Can a DBT VLIW machine be ever any
better than a well-conceived superscalar?
Better light-weight optimisations possible?
Real-time problems solvable?
Which translation cache management

policy is best?
Target architecture ever exposed to

users?

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation36

DBT for Multiple Source
Architectures?

 Efficient translation requires some hardware support for
the source architecture in the target hardware
architecture
 Opcodes
 Condition code registers
 Floating-point formats
 Timer registers
 Segment registers
 Address translation and MMU
 Other awkward details (8-bit reg. access, alignment,…)

 Crusoe’s VLIW has some features to address IA-32’s
legacy oddities

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation37

More Aggressive Application:
Dynamo’s Dynamic Optimisation

Static optimisation in compiler backend is
limited
Often profile-based optimisations not used
Lots of runtime info not available
Static optimisations are typically

implementation independent
“Translate” with the same source and

target architecture: dynamic
optimisation!

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation38

More Aggressive Application:
Dynamo’s Dynamic Optimisation

 Slightly different emphasis: centred on user code, no
optimisation of the OS

Daisy Virtual Machine

AIX

AIX Applications

Daisy VLIW Processor

Daisy

Dynamo

HP-UX

HP-UX Applications

PA-RISC

Dynamo

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation39

More Aggressive Application:
Dynamo’s Dynamic Optimisation

Optimisations:
Identify long instruction groups (traces)
Extend traces over
 Indirect branches
 Function calls and returns
 Virtual function calls

Optimise traces: classic ILP optimisations,
remove unconditional branches,…

Dynamo can bail out…

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation40

More Aggressive Application:
Dynamo Speedup over –O2

 No optimisation  only dynamic inlining with trace selection
 go and vortex bail-out

So
ur

ce
: B

al
a

et
 a

l.,
 ©

 A
CM

 2
00

0

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation41

More Aggressive Application:
Dynamo Bail-Out

Source: Bala et al., © ACM 2000

Is the Idea Dead with Transmeta?
Not at All…

 Nvidia announced in 2014 its first CPU design, code-named Denver
 Native ARMv8  2 instructions per cycle

 Avoid the troubles of emulation
 Uses trivial translation (“decoding”) into a proprietary µ-op set

 Can perform DBT to the proprietary µ-op set  7 µ-op per cycle
 Fully exploits the µ-op set only with proper recompilation / sw optimization

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation42

So
ur

ce
: G

w
en

na
p,

 ©
 T

he
 L

in
le

y
Gr

ou
p

20
14

Denver Microarchitecture:
A Simple In-Order Superscalar

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation43

So
ur

ce
: G

w
en

na
p,

 ©
 T

he
 L

in
le

y
Gr

ou
p

20
14

No fancy OOO scheduler!
Simply check data

dependences and stall

Skewed pipeline
can bundle a

Load/ALU/Store
dependent sequence

µ-ops are fetched in bundles:
similar to a VLIW in that

parallel operations are selected
at compile time

A Sample Execution Trace

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation44

So
ur

ce
: G

w
en

na
p,

 ©
 T

he
 L

in
le

y
Gr

ou
p

20
14

The optimizer is invoked for new parts of code never visited before
or for translations that have been evicted, as natural

Yet, the optimizer can also be invoked if the branch behaviour
changes (e.g., a branch predictor is modified)

The Net Result: The Fastest ARM

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation45

So
ur

ce
: G

w
en

na
p,

 ©
 T

he
 L

in
le

y
Gr

ou
p

20
14

1.4 GHz

2.5 GHz

© Ienne 2003-22AdvCompArch — Dynamic Binary Translation46

References

 Tutorial by Erik Altman and Kemal Ebcioğlu (IBM T. J. Watson
Research Center), given at MICRO-33 in December 2000

http://www.microarch.org/micro33/tutorial/tutorial.html
 Daisy

 http://www.research.ibm.com/daisy
 E. R. Altman et al., Advances and Future Challenges in Binary

Translation and Optimization, IEEE Proceedings, 89(11):1710-22,
November 2001

 Dynamo
 http://www.hpl.hp.com/cambridge/projects/Dynamo
 V. Bala et al., Dynamo: A Transparent Dynamic Optimization System,

PLDI 2000
 IEEE Transactions on Computers, June 2001 – Special issue on

Dynamic Optimisation
 IEEE Computer, March 2000 – Special issue on Binary Translation
 Gwennap, Nvidia’s First CPU Is a Winner, MPR 18th August 2014

http://www.microarch.org/micro33/tutorial/tutorial.html
http://www.research.ibm.com/daisy
http://www.hpl.hp.com/cambridge/projects/Dynamo

	Advanced Computer Architecture�—�Part I: General Purpose�Dynamic Binary Translation,…
	Binary Compatibility
	Binary Compatibility
	Summary
	Source and Target Architecture
	Activities in DBT
	Two Ways to Aggressive ILP
	(Statically Scheduled) Very Long Instruction Word Processor
	VLIW Binary Is Incompatible with More Aggressive Implementations
	Emulation or Static Translation
	Emulation
	Static Translation
	Difficulties of Static Translation
	Dynamic Binary Translation
	Dynamic Binary Translation
	Dynamic Binary Translation�Typical Execution Flow
	Typical Optimisations to Translated Code
	DBT Hardware/Software Interface
	DBT Engine
	Example of DBT Processor�Transmeta Crusoe TM5400
	Traditional System
	DBT System (Daisy)
	Translation Cache
	Difficult Problems for DBT
	Example of Problems: �DBT and Exceptions
	Example of Problems: �DBT and Exceptions
	Example of Problems: �DBT and Exceptions
	Does it Really Work?�Some Performance Figures
	Daisy ILP with Infinite Cache
	Daisy Break-out of CPI Performance
	Additional Optimisations in DBT
	Benefits of DBT
	Benefits of DBT
	Issues of DBT
	Open Problems of DBT
	DBT for Multiple Source Architectures?
	More Aggressive Application:�Dynamo’s Dynamic Optimisation
	More Aggressive Application:�Dynamo’s Dynamic Optimisation
	More Aggressive Application:�Dynamo’s Dynamic Optimisation
	More Aggressive Application:�Dynamo Speedup over –O2
	More Aggressive Application:�Dynamo Bail-Out
	Is the Idea Dead with Transmeta?�Not at All…
	Denver Microarchitecture:�A Simple In-Order Superscalar
	A Sample Execution Trace
	The Net Result: The Fastest ARM
	References

