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Binary Compatibility

Single worst obstacle to processor evolution
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Binary Compatibility
g

I New architectures cannot be introduced and the
scope for enhancement is reduced considerably

INon IA-32 architectures can ever be established?

OS
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Summary
g

dTraditional approaches to circumvent (with very
moderate success) binary compatibility issues

dDynamic Binary Translation (DBT)

JKey difficulties, solutions, open problems
J Example applications

d Further work

dConclusions
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Source and Target Architecture

JTranslation
| | Physical
Binary File Translate Hardware
So= o and/or =
ur Optimise
Architecture P Arg;:g;tre
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Activities in DBT
S EEEEE— s
dTransmeta’s Crusoe
“»Commercial processor shipped in 2000
“*Source: IA-32 architecture (Pentium III)
% Targets very low power, low cost markets

JIBM’s Daisy

“*Research project started in 1996
“»Source: PowerPC architecture
*»*16-issue VLIW

JHP Labs’ Dynamo
“*Source = Target: PA-RISC to PA-RISC translator (!)

JANnd many more...
e
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Two Ways to Aggressive ILP

[T T 11 l [T 11

VLIW ‘ | Superscalar
| ¢ Dynamic Scheduling
CT T 11 l Pipelining Cycleis
L1 v Instructions
1

MW Standard
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(Statically Scheduled) Very Long

Instruction Word Processor
I EEEEEII———————.

Register Files ALU 1 ALU 2 EP Unit Load/S_tore Bran_ch
Unit Unit
Static
Scheduling:

What each unit
does in each cycle
IS decided at

compile time in _
software Instruction Memory 128-512 bits

M.
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VLIW Binary Is Incompatible with
More Aggressive Implementations

----------------------------------------------------------

------------------------------------------------------

: Load/Store]|[ Branch
ALU 1 ALU 2 FP Unit Unit Unit
1 1
| |
f f
Dynamic Scheduler
| |
: : <+ Traditional Code
Load/Store
ALU 1 ALU 2 Unit
|
|
|
|
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Emulation or Static Translation

0x0000 12 34 56 78 la 2 4d cl b2 a3 92 3c 00 41 23
0x0010 12 13 14 15 32 a cc 30 00 19 82 41 42 53 54
3

0x0020 43 44 67 78 a2 b d5 01 aa bb cc 14 00 1la bc
0x0030 01l aa cc bb 04 ffggfe £d 08 00 1la bc 12 42 42 42

J Emulation: Instruction by instruction simulation
of the source architecture

1Static Translation: Conversion from machine
code of the source architecture to the machine

code of the target architecture
AL
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Emulation

0x0000 12 34 56
0x0010 12 13 14
0x0020 43 44 67
0x0030 01 aa

50 04 ff fe f£fd 08 00 la bcyl2 42 42 42

addi $a1,:)_,b mul $vl, $vl, Sa0

addi sub { mul sub {
}i };
Performance cannot be but poor...
G\
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Static Translation

0x0000 12 34 56

a3 92 3c 00 41 23

0x0010 12 13 14 X 0O 00 19 82 41 42 53 54
0x0020 43 44 67 d5 01 aa bb cc 14 00 la bc
0x0030 0 pb 04 ff fe fd 08 00 1la bc 12 42 42 42
add $al, $al, S$vl ADD BX, CX
addi $al, $vO0, 12 ADD BX, 12
mul $v1, S$vl, $al MUL EX, DX
jal label CALL label
0x0000 30 00 18 54 cl1
0x0010 12 16 ha bb cc 12 34 b2 a3 92
0x0020 2b 3c 0d dd c4 d5 01 3 cc 00 1la bc
0x0030 01 00 l1a bc 12 42 42 42 42 43 44 67 aa 14 cc bb
- ll . . m
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Difficulties of Static Translation
I EEEEEII———————.

1 Code identification: all code must be
discovered statically and separated from
embedded data

Self-modifying code: what to do with it?
Additional hardware to allow support of source
architecture?

1 Precise Exceptions: no 1-to-1 relation
between target instructions and source ones

JOS: Support of shared libraries and system calls

Never a 100% solution!
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Dynamic Binary Translation
e o

1The basic idea of a hybrid approach:

Merge emulation and translation
to get the best of both worlds
(and finally get much more...)
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Dynamic Binary Translation
e o

JHow to put the idea in practice?

+ Start by emulate everything
= Explore code
= Profile (control flow, data, etc.)

< Translate and optimise code reused frequently
= Optimise when it is worth spending the effort

*+ Use translation when available
= Run efficiently important code
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Dynamic Binary Translation

Typical Execution Flow

Interpret next
instr. and add it
to curr. group

1

Stopping
point?

Group
seen 30x?

Translation
exists?

Translate and
schedule group
for VLIW

Execute
VLIW translation

Close previous
group and
begin a new one

1

Check first
instruction
of next group

A

of whole group
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Typical Optimisations to Translated
Code

JILP scheduling (data and control
speculation)

JLoop unrolling

JAlias analysis

_Load-store telescoping
_1Copy propagation
J1Combining

Unification

Limited dead-code elimination

ECOLE POLYTECHNIQUE 1 7
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DBT Hardware/Software Interface

Traditional DBT
System System

Applications Applications

0l

Operating System Operating System

_ DBT Engine
Native
Processor
VLIW Processor
L . . lap)
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DBT Engine
e o

JAdditional layer of software which also
takes over the hardware scheduler of
superscalar processors

dMany names: Virtual Machine Monitor
(Daisy), Code Morphing Software
(Crusoe), etc.

ECOLE POLYTECHNIQUE 1 9
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Example of DBT Processor
Transmeta Crusoe TM5400

Shadow GPRs Shadow FPRs
64 J 32 J
GPRs FPRs
128 Load
bit || ALUO ALU1 0a Branch FPU
VLIW Store
Gated Store B.
8K Local 8K Local
Data RAM « > “ » Inst. RAM
64K L1 . : ’ : 64K L1
D-Cache v : I-Cache
256K L2
Unified Cache
P . |
riaee 20 AdvCompArch — Dynamic Binary Translation
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Traditional System
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DBT System (Daisy)

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE 22

AdvCompArch — Dynamic Binary Translation

DAISY
L3 Cachel— VLIW
‘ DAISY PowerPC
Flash ROM Flash ROM
HEmey _I_I_I_LI_I
Controller
‘ Disk Video | |Network Keyboard‘
PowerPC DAISY
Memory Mem.

L
© lenne 2003-22 m



Translation Cache
I EEEEEII———————.

dKeep translated pages in memory for later
reuse

I Not a real cache: can be a translation buffer in
main memory

J Essential to leverage the high cost of
translation and of good optimisations

JdTrade-off: Cost of memory vs. higher reuse
JResearch topic: Best allocation policies?

dInvalidate translated pages when modification in
the corresponding source page

ECOLE POLYTECHNIQUE 23
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Difficult Problems for DBT
I EEEEEII———————.

1Self-modifying code

_Precise exceptions

_JAddress translations, aliasing
_1Self-referential code
_JManagement of translation cache
_Real-time code

_1Boot code

ECOLE POLYTECHNIQUE
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Example of Problems:

DBT and Exceptions
e EEEE—_ aaaay

JAsynchronous exceptions
++Can be delayed, no big deal
“*Wait until end of group
“*Translate exception handler
“»Invoke translated exception handler

ECOLE POLYTECHNIQUE
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Example of Problems:

DBT and Exceptions
e EEEE—_ aaaay

dSynchronous exceptions (e.g., Crusoe)
< During emulation, no issue

“If synchronous exception during the execution of a
translated and optimised group of VLIW
instructions, unclear instruction and state w.r.t.
source architecture (speculative, out-of-order, etc.)

“*Revert status to beginning of current translated
group
<+ Re-emulate source architecture to find the exact

point of the exception and to leave the processor in
the architecturally correct state

< Invoke translated exception handler

ECOLE POLYTECHNIQUE
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Example of Problems:

DBT and Exceptions
e EEEE—_ aaaay

I Not so simple...

JReverting status needs some architectural
support (Crusoe)

+Set of shadow registers which get the value of the
main registers at the end of a group

+ Gated store buffer which holds pending stores for
commit at the end of a group

1Side advantages in optimisation potential

ECOLE POLYTECHNIQUE 27
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Does it Really Work?

Some Performance Figures
g

dDaisy achieves ILP up to 3-4 instructions per
cycle

dTransmeta T5400 at 667 MHz is about the same
of Pentium III at 500 MHz (Doug Laird,
Transmeta VP)

Dynamo improves execution time up to 22%

ECOLE POLYTECHNIQUE
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Daisy ILP with Infinite Cache

11

ILP

10

- Ql ’
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Daisy Break-out of CPl Performance
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Additional Optimisations in DBT
e EEEE—_ aaaay

Block Reordering: Make target image
execution as sequential as possible

dMemory Colouring: Improve mapping of
translated code to fit target memory
hierarchy

JCode Specialization: Clone procedures
based on constant parameter values

ECOLE POLYTECHNIQUE 31
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Benefits of DBT
I EEEEEII———————.

JCompatibility
“*With native implementations
“*Across different VLIWSs sizes and generations

JReliability and possibilities to upgrade
“»Software patches for bugs in translator
“*Software patches for optimiser enhancements
“*Translator can be used to hide hardware bugs

ECOLE POLYTECHNIQUE
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Benefits of DBT
I EEEEEII———————.

JdLow hardware cost
“*SW scheduler: smaller chip with higher yield
“*Fast in-order implementations possible
dHigher instruction-level parallelism
“*Dynamic groups can be made arbitrarily large
JLow-power consumption

“*Memory consumes less than logic: schedule
once and then fetch from memory (?)

ECOLE POLYTECHNIQUE
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Issues of DBT
I EEEEEII———————.

JReduced resources for the user
“*Cycles: lost performance for translation
<*Memory

Slow at start (emulation) and real-time

difficulties

1Debugging difficulties

“*Target machine code far removed from
source code

“*Non-deterministic behaviour of real-systems
LGl
oo 34

L
AdvCompArch — Dynamic Binary Translation © lenne 2003-22 m




Open Problems of DBT

JCan a DBT VLIW machine be ever any
better than a well-conceived superscalar?

Better light-weight optimisations possible?
_JReal-time problems solvable?

JWhich translation cache management
policy is best?

JTarget architecture ever exposed to
users?

ECOLE POLYTECHNIQUE
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DBT for Multiple Source

Architectures?
-

- Efficient translation requires some hardware support for
the source architecture in the target hardware
architecture

%+ Opcodes

% Condition code registers

% Floating-point formats

*» Timer registers

% Segment registers

% Address translation and MMU

< Other awkward details (8-bit reg. access, alignment,...)

1 Crusoe’s VLIW has some features to address IA-32’'s
legacy oddities

ECOLE POLYTECHNIQUE
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More Aggressive Application:
Dynamo’s Dynamic Optimisation
e ——
(Static optimisation in compiler backend is
limited
“+Often profile-based optimisations not used
“Lots of runtime info not available
+Static optimisations are typically

implementation independent
A" Translate” with the same source and
target architecture: dynamic
optimisation!
AL
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More Aggressive Application:
Dynamo’s Dynamic Optimisation

- Slightly different emphasis: centred on user code, no
optimisation of the OS

ECOLE POLYTECHNIQUE
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More Aggressive Application:
Dynamo’s Dynamic Optimisation
B
JOptimisations:
“*Identify long instruction groups (traces)
“+Extend traces over
= Indirect branches

= Function calls and returns
= Virtual function calls

“+Optimise traces: classic ILP optimisations,
remove unconditional branches,...

dDynamo can bail out...

ECOLE POLYTECHNIQUE
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More Aggressive Application:

Dynamo Speedup over -02
e EEEE—_ aaaay
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Source: Bala et al.,, © ACM 2000
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More Aggressive Application:
Dynamo Bail-Out

100%

90% Ogo

80% B go (with bail-out)
70% 0O m88ksim

60%
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10% AT wwwww\”ﬂ
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0 100 ey 200

Overhead (% time spent in Dynamo)

Source: Bala et al., © ACM 2000
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Is the ldea Dead with Transmeta?
Not at All...

A Nvidia announced in 2014 its first CPU design, code-named Denver
J Native ARMv8 - 2 instructions per cycle

% Avoid the troubles of emulation
% Uses trivial translation (“decoding”) into a proprietary p-op set

[ Can perform DBT to the proprietary p-op set > 7 y-op per cycle

% Fully exploits the p-op set only with proper recompilation / sw optimization

Source: Gwennap, © The Linley Group 2014

ARM
Instructions Optimization Cache
(Main Memaory)
*
Hardware = - Optimizer /
YNAmic
Dﬂﬂfdel' Profile Info
Optimized
Scheduler Mioro-One Microcode
Execution
Units
Denver CPU

- Ql

®
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Denver Microarchitecture:
A Simple In-Order Superscalar

S EEEE—
M-ops are fetched in bundles:

similar to a VLIW in that X B;T;g“ > I-TLB | 128KB Instruction Cache (4 way)
parallel operations are selected Unit } 32 bytes
f ile ti | Fetch Queue |
at compiie time \ 7 pops | 1 2instr ]
HW <
HCode ARM ARM p —
\/ Emindar Dgci:dar Daoi:dar fotoh | 2MB i
L2
—\ > | Scheduler | | L2 |cachef S
/ l 7 pops TLB | (16 i
| | ! ! ' | ! ! way) Q
No fa_mcy OOOQ scheduler! B e [ | e FP e =
Simply check data ranch| | Store | | Store +Mult Add @
dependences and stall T1es | fte+ [ffe4 11154 1146 111125 114128 =
| Integer Registers | | FP + Neon Regs | ©
[ 164 1128 )
128 | 1 %
| D-TLB 64KB Data Cache (4 way) |+ (.';J
.
IP1 Ic2 W3 N4 INS SB1 sB2 Ug')
*| ITLB |13 Read | Way Sel | Decode | Fetch o | Pick | Sched Skewed pipeline
can bundle a
EBO EB1 EAZ ED3 EL4 EE3 ES6 EWY
qegad | Bypass | Ld Addr | D$ Read | Bypass | Execute | StAddr | Reg Wr | Load/ALU/Store

| dependent sequence

.( |]fl- 13-cycle mispredict penalty
[ ]
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A Sample Execution Trace

| Optimized Microcode Exe::utlnn | | ARM Decoded Execution [l Optimizer Execution
2 illll-lll"l"'-"" iiil-" : T «
= o
= N
g 3
T O
% of Benchmark Hun (time) E
©
The optimizer is invoked for new parts of code never visited before £
or for translations that have been evicted, as natural &
Yet, the optimizer can also be invoked if the branch behaviour &

changes (e.g., a branch predictor is modified)
G\
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The Net Result: The Fastest ARM

B
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Snapdragon Apple Tegra Tegra Snapdragon
805 AT K1-32 K1-64 810

CPU ISA ARMv? ARMvE ARMvT ARMvE ARMwvE
CPU Type 4x Krait 400 | 2x Cyclone | 4xA15 | 2x Denver 4::‘:;;
CPU Speed 2.5GHz 1.4GHz 2.3GHz 2.5GHz 2.2GHz#
CPU Perf*% 355T/11.9|505T/9.6 |395T/13.3|635T/11.9 (445T /179
GPU Type Adreno 420 | SGX5 MP4 | Kepler-192 | Kepler-192 | Adreno 430
GPU Perft§ 194ps 13fps 27fps 27fps 25fps+
Video Decode 4k 1080p 4K 4K 4K
ISP 1.0GP/s Mot disclosed 1.2GP/s 1.2GFP/s 1.2GP/s
IC Process 28nm HPM | 28nm HPM | 28nm HFM | 28nm HPM | 20nm HKMG
First Devices 2014 3Q13 2a14 4014 (est) 1H15 (est)

200% mK1-32 miPhone

180% D Haswell w® oDenver Qv

160% |_

140%

120%

100% —
80% —
60%

40% |

20% —

0% =
SPECint2k SPECTp2k Antutu 4 Geekbench2 Octane v2.0
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